
# Cell Cycle Progression and Cell Division Unraveled by Flow Cytometry

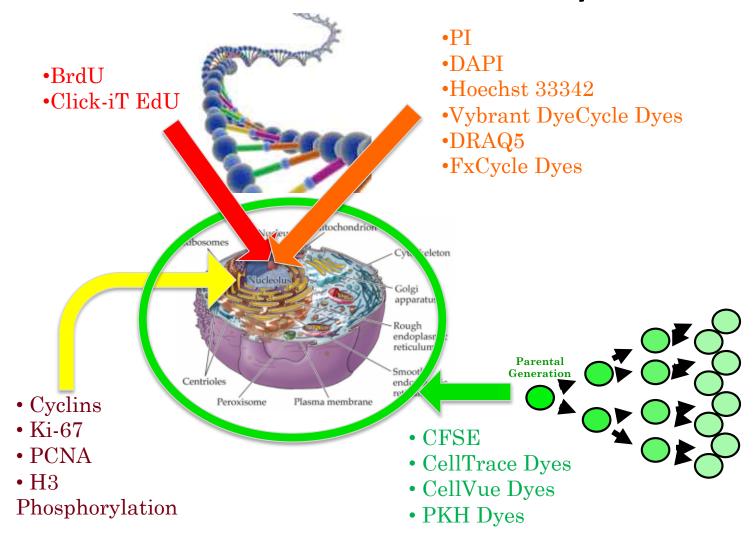
DNA analysis teaches us about the DNA content of cells but also forces us to learn how to use a flow cytometer



Paul K Wallace
<a href="mailto:pkwallace@odobenus.org">pkwallace@odobenus.org</a>
Professor Emeritus
Roswell Park Comprehensive
Cancer Center
Buffalo, NY 14263

## **Acknowledgements**

- Paul Karl Horan (aka PKH), Bruce Jensen, Sue Slezak, Betsy Ohlsson-Wilhelm (Zynaxis Cell Science)
- Kathy Muirhead (Zynaxis & SciGro)
- Joe Tario, Kah Teong Soh (RPCCC)
- Drew Bantly, Jonni Moore (U. Penn)
- Kylie Price (The Malaghan Institute)
- Bruce Bagwell, Chris Bray, Mark Munson, Don Herbert (Verity)
- Alice Givan, Jan Fisher, Mary Waugh (Dartmouth)
- Lizanne Breslin, Brian Gray (PTI Research)
- Kitty DeJong (RPCCC)
- Annual Course participants through the years







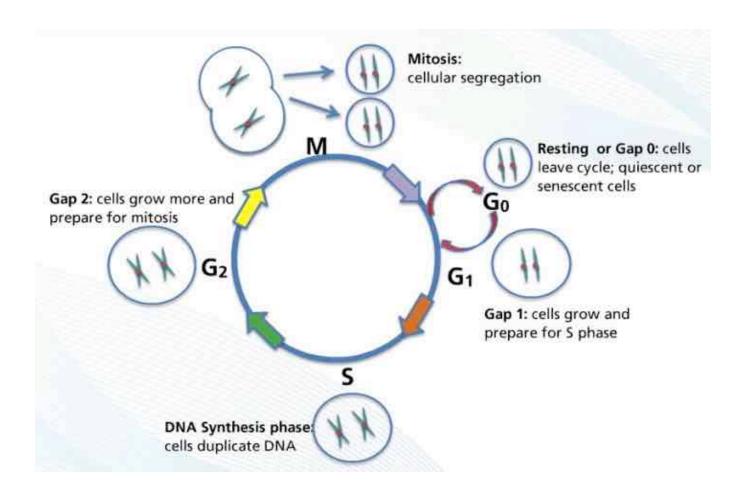



### **How Can You Measure Cell Division by FCM?**



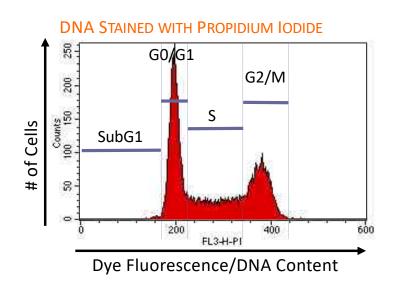
### THE PLAN

- Cell Cycle, Dyes & Techniques
  - Doublets- slow is the way to go
  - Data Analysis
    - Simple analysis
    - Modelling
  - Clinical Significance of Aneuploidy & S phase
  - Modelling Synchronized Populations
- Tracking Dye Dilution
  - The dyes many choices
  - Modelling Dye Dilution Data
  - Tracking Applications



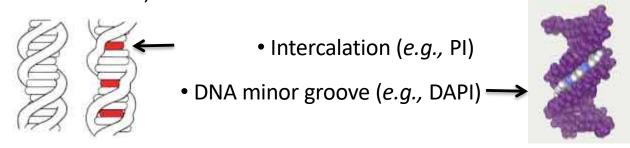

### THE PLAN

- Cell Cycle, Dyes & Techniques
  - Doublets- slow is the way to go
  - Data Analysis
    - Simple analysis
    - Modelling
  - Clinical Significance of Aneuploidy & S phase
  - Modelling Synchronized Populations
- Tracking Dye Dilution
  - The dyes many choices
  - Modelling Dye Dilution Data
  - Tracking Applications




## **Four Phases of The Cell Cycle**




## **DNA Content Changes During Cell Cycle**

- DNA binding dyes bind stoichiometrically = Fluorescence intensity is proportional to the amount of DNA present within cell
- Used to quantitate amount of DNA and therefore position in the cell cycle (e.g., cells in G2 have 2x amount of DNA as cells in G1)
- Fluorescence data used to generate DNA histograms
- The DNA histogram gives a static picture of the proportion of cells in different phases of the cell cycle

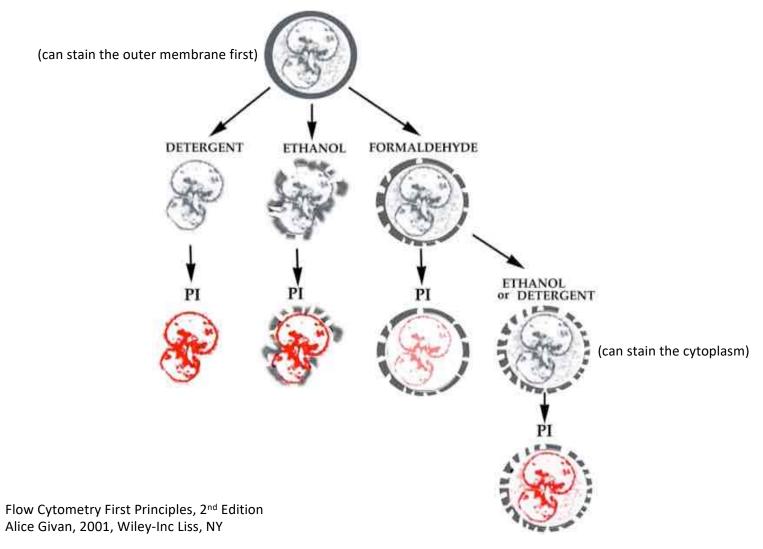


## **DNA Binding Dye Characteristics**

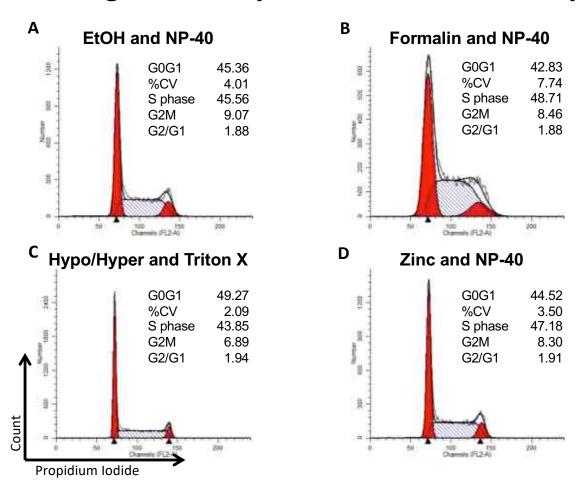
• **WEAKLY-FLUORESCENT** — until bound to nucleic acids where fluorescence increases 100-1000x, once bound via:



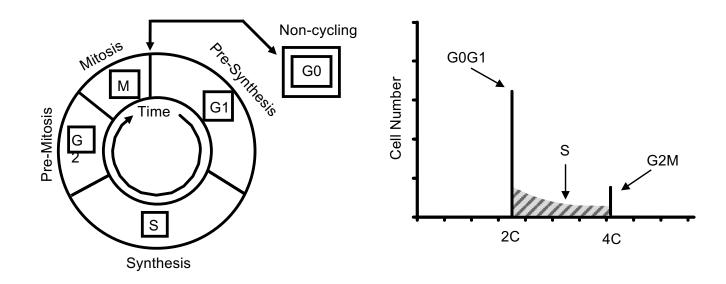
- •IMPERMEANT cannot cross the cell membrane unless cells are fixed OR -e.g., PI, DAPI
- **PERMEANT** (a.k.a. VITAL) pass straight through intact cell membrane *e.g.*, Hoechst 33342, DRAQ5, DyeCycle Dyes
- NUCLEIC ACID SPECIFICITY:


### dsDNA and dsRNA

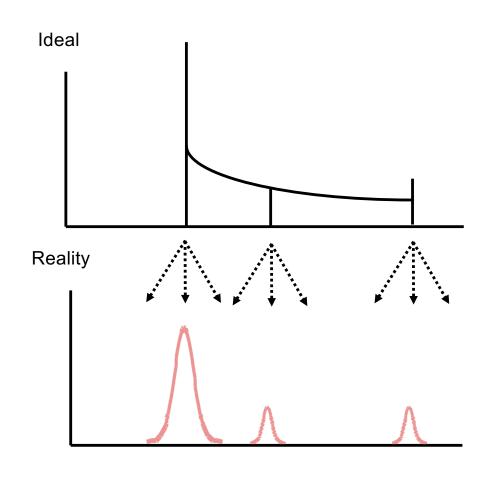
- Propidium Iodide (PI)
- SYTOX®
- TOTO or TO-PRO
- DRAQ 5


### dsDNA only (nucleic acid preference)

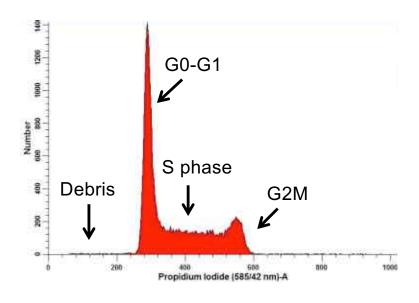
- 7-AAD (G-C)
- Hoechst 33342 (A-T)
- DAPI (A-T)
- Vybrant ® DyeCycle


## **Fixation and Permeabilisation**




## Effect of Different Fixatives & Cell Preparations on DNA Cell Cycle Histogram Quality and Quantification of Cycle Phases

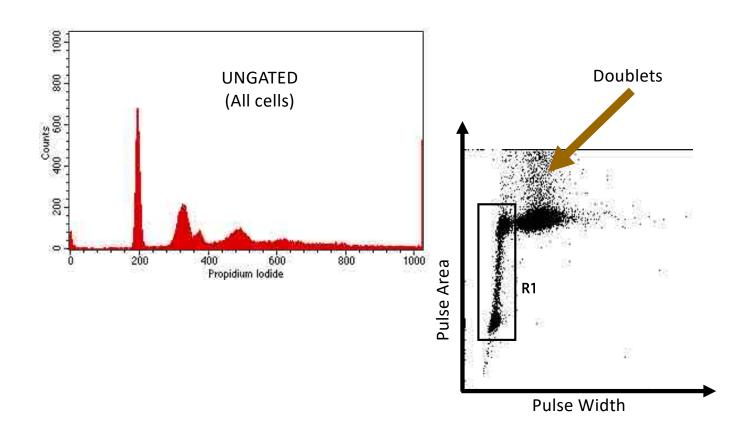



### **CONCEPT 1: DNA VS TIME IN CYCLE**

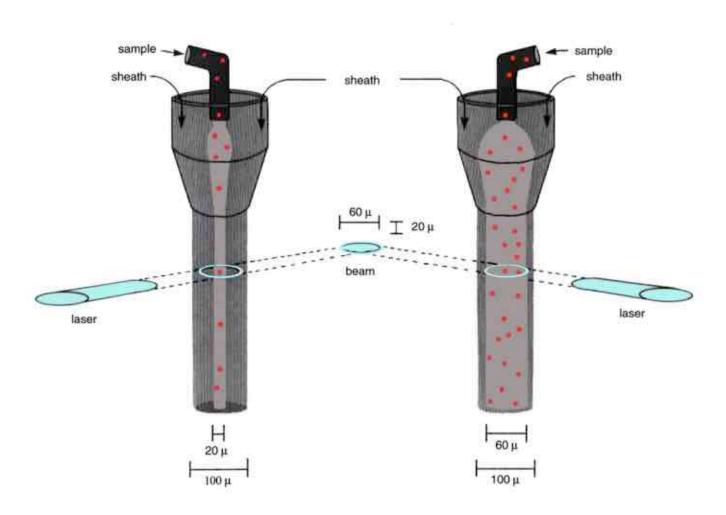


## **Concept 3: Signal Broadening**

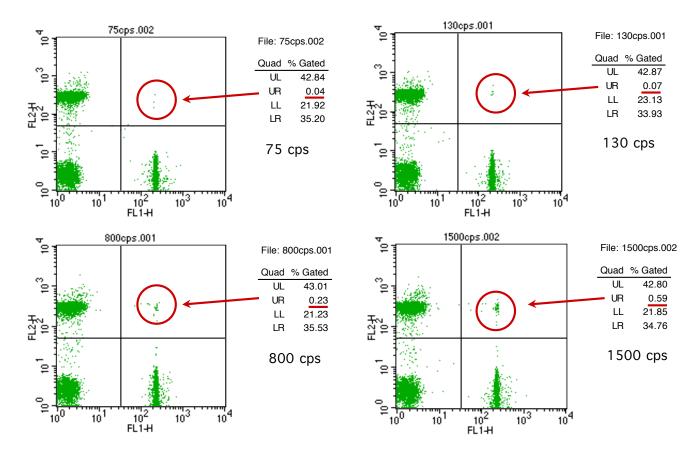



## The DNA Histogram

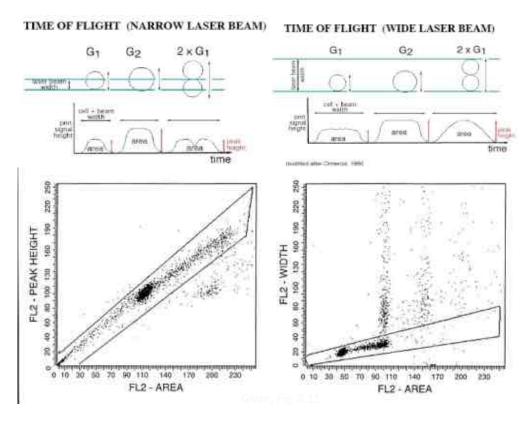



### A product of:

- DNA content per cell
- Number of cells present in each cell cycle stage
  • Signal broadening due to staining
- and measurement variability


## What's Going on Here?

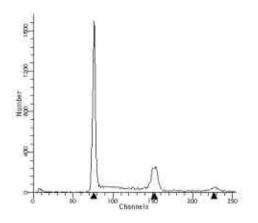



CELLS FLOWING THROUGH A LASER BEAM: with a wide core, the cells are not equally illuminated and multiple cells may coincide in the laser beam.

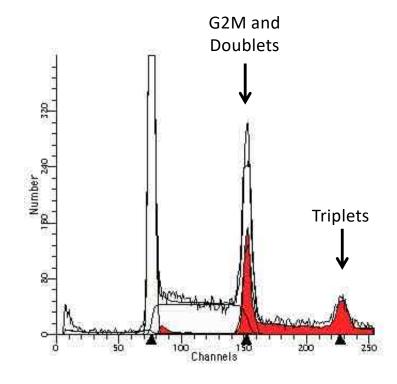


## HOW TO MAKE DOUBLE POSITIVES LESS RARE: CREATE PSEUDO-AGGREGATES




## **Elimination of Cell Aggregates Using Pulse Shape**




- Area vs. Height for narrow beam
- Area vs. Width for wide beam

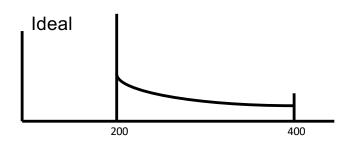
Flow Cytometry First Principles, 2<sup>nd</sup> Edition Alice Givan, 2001, Wiley-Inc Liss, NY

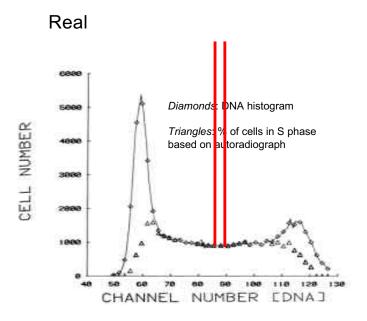
### MATHEMATICAL MODELING TO "REMOVE" AGGREGATES



By knowing the number of G0G1 singlets and the number of G0G1 triplets, the number of doublets can be mathematically estimated.




Slide courtesy of Alice Givan


### THE PLAN

- Cell Cycle, Dyes & Techniques
  - Doublets- slow is the way to go
  - Data Analysis
    - · Simple analysis
    - Modelling
  - Clinical Significance of Aneuploidy & S phase
  - Modelling Synchronized Populations
- Tracking Dye Dilution
  - The dyes many choices
  - Modelling Dye Dilution Data
  - Tracking Applications



## Why Model DNA Content?





#### Ideal

- Identical DNA content => identical # DNA dyes/cell
- Identical # DNA dyes/cell => identical fluorescence
- 2X # of DNA dyes => 2X fluorescence intensity

#### Real

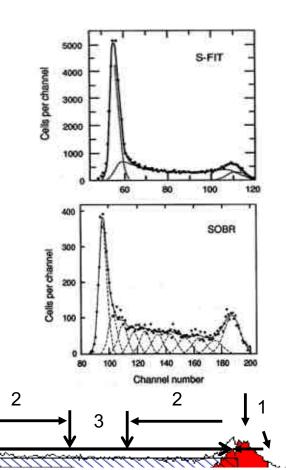
- 1-5% variation in # DNA dyes/cell for cells with identical DNA content
- 1-5% variation in fluorescence intensity for cells with identical # DNA dyes per cell
- ⇒ Boundaries between cell cycle phases blur
- ⇒ Goal is to minimize staining and analysis-related variability

### ?? How does variability effect our analysis

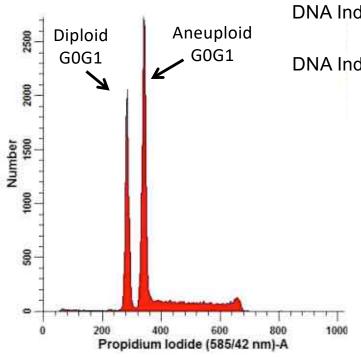
### **Experimental Setup**

- Cells were labeled in culture for 10 min with <sup>3</sup>H-thymidine
- Stained with mithramycin
- Sorted based on DNA content (2-channels per fraction)
- Perform autoradiography on each fraction and count the number of cells that had taken up <sup>3</sup>H-thymidine (i.e. were in S phase)

Sheck LE, et. al., (1980). Cytometry. 1:109


## Simple Analysis: Inside Out or S-FIT Method

### Inside Out:

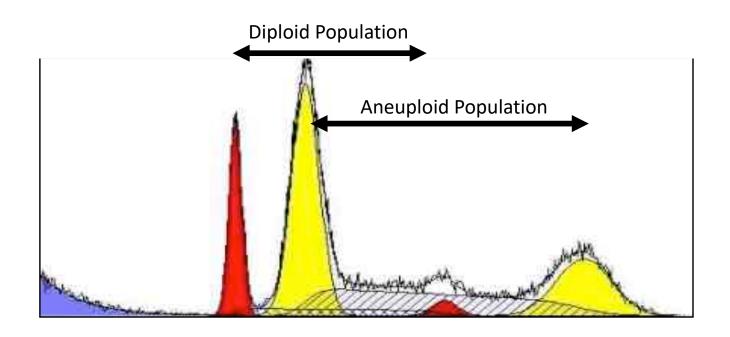

- 1. Find G0-G1 & G2M peaks. Estimate SD of each
- 2. Move 2 or 3 SD from G0-G1 & G2M peaks to establish "pure" S region
- 3. Fit S with rectangle, trapezoid or 2° polynomial
- 4. Determine G0-G1 & G2M by subtracting fitted S

Dean PN and Jett JH. Mathematical analysis of DNA distributions derived from flow microfluorometry. J Cell Biol. 60:523-7, 1974.

Baisch H *et al.* A comparison of mathematical methods for the analysis of DNA histograms obtained by flow cytometry. Cell Tissue Kinet. *15*:235-49,1982.



## DNA Diploid vs. DNA Aneuploid



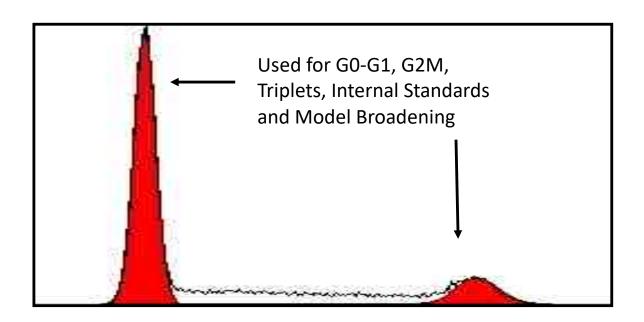

DNA Index = 
$$\frac{291.8}{222.4}$$
 = 1.31

Tumor samples may contain multiple cell types:

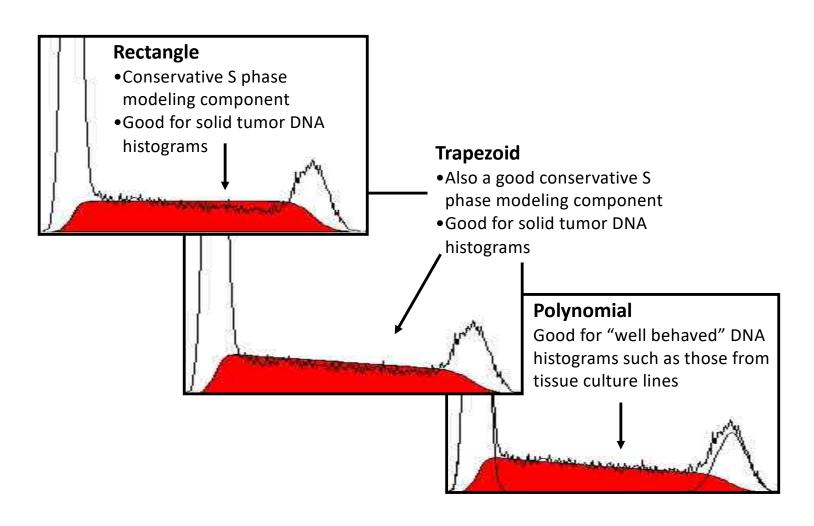
- A diploid stromal cell population with normal DNA content (may be cycling or not)
- One or more aneuploid neoplastic populations with abnormal DNA content
- The challenge is to determine which of the GOG1 peaks is tumor vs.
   normal cells

## Add a Little More Complexity: Non-Linear Least Squares Analysis




## **Model Components**

### **Model Component:**


A mathematical construct that simulates some physical or biological process

- Gaussian
- Broadened Rectangle(s)
- Broadened Trapezoid(s)
- Broadened Polynomial
- Debris Fit (Exponential, Single Cut, Multiple-cut)
- Aggregate Compensation

## **Model Component: Gaussian**

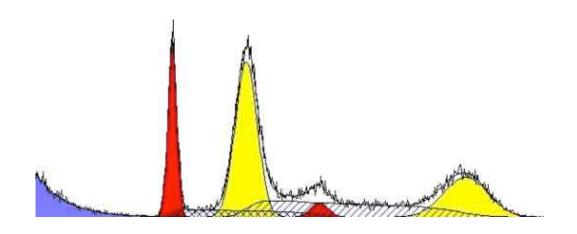


## **Model Components Used to Fit S Phase**



## **Non-Linear Least-Squares Analysis**



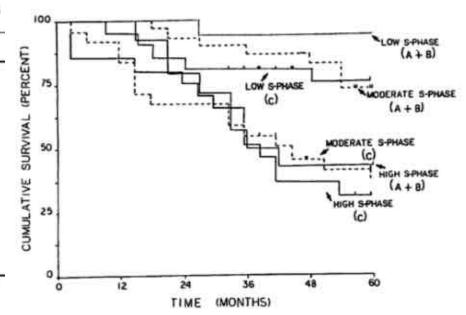

## Advantages and Disadvantages of DNA Modeling

### Advantages

- Accurate
- Reproducible
- Efficient
- Conducive to graphical reporting

### Disadvantages

- Problems choosing the appropriate model
- Different modeling algorithms in different programs will give slightly different results
- Accurate modeling requires sufficient events to avoid fitting noise<sup>1</sup>



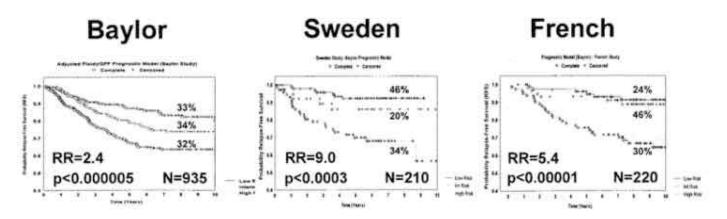

# Is DNA Ploidy or %S Phase Prognostic in Colorectal Neoplasia? Some Say "Yes", Others "No"

Prognostic significance of DNA Ploidy in Colorectal Cancer in Relation to Risk for Recurrence or Overall Survival

| Reference        | Number<br>of Cases | Probability          |
|------------------|--------------------|----------------------|
| Witzig et al.    | 694*               | 0.001 (multivariate) |
| Harlow et al.    | 69                 | 0.2 (multivariate)   |
| Scott et al.     | 264                | 0.003 (multivariate) |
| Halvorsen et al. | 149                | ns" (multivariate)   |
| Melamed et al.   | 33                 | ns                   |
| Schutte et al.   | 279                | 0.07 (univariable)   |
| Emdin et al.     | 37                 | 0.007 (univariable)  |
| Bauer et al.     | 97                 | 0.1 (multivariate)   |
| Wolley et al.    | 33                 | nr <sup>a</sup>      |
| Giaretti et al.  | 115                | 0.005 (multivariate) |
| Wiggers et al.   | 350                | 0.12 (univariable)   |
| Quirke et al.    | 125                | 0.02 (univariable)   |
| Rognum et al.    | 100                | 0.04 (multivariate)  |
| Armitage et al.  | 326                | ns (multivariate)    |
| Kokal et al.     | 77                 | 0.004 (univariable)  |

<sup>&</sup>quot;ns = not significant; bnr = not reported; "colonic cancer only frectal cancer only




Survival curves for colon cancer cases stratified by S phase fraction and tumor grade showed a significant difference between low, moderate and high proliferative activity and survival

Summary data from 15 studies evaluating the importance of DNA ploidy in colorectal cancer

- 7/15 (47%) found no significant correlation (p>0.05)
- The rest found a high degree of correlation with either recurrence or overall survival

Bauer, K.D. (1993) Colorectal Neoplasia. In: Clinical flow cytometry, principles and applications. Edited by Bauer K.D. et. al. Williams & Wilkins, Baltimore. pp 307-317.

### Prognostic Significance of S-Phase Fraction in Node-Negative Breast Cancer



- If the S phases are not adjusted for both the aneuploid fraction and the diploid normal dilution effects, there is a significant correlation between DNA ploidy and S phase fraction, 0.42, and a modest *p*-value
- Statisticians would normally either drop the S phase or the DNA ploidy in the analysis due to this correlation (usually the DNA ploidy was dropped)
- If DNA ploidy and S phase adjustment are applied, the correlation between DNA ploidy and S phase is reduced and the *p*-value becomes very significant

## %S Phase for Prognosis in Node-Negative Breast Cancer? Conflicting Literature

Bagwell *et. al.* also tested 3 rules to the calculation of tumor %S phase fraction to improve the prognostic utility of this measurement in node negative breast cancer patients

#### Rule 1

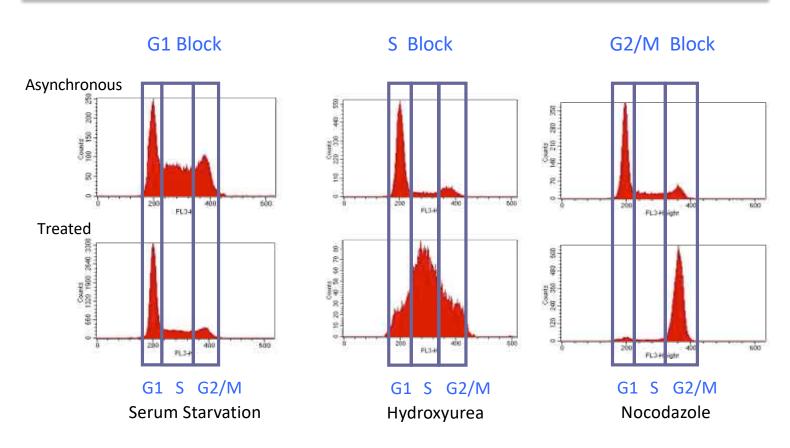
Aneuploid fraction<sup>1</sup> effect: As the aneuploid fraction approaches zero there is a strong tendency for modeling software to over-estimate the aneuploid S phase fraction

• Assuming the reason for this bias is due to signal-to-noise, this rule uses a mathematical function to calculate the adjusted %S phase fraction in aneuploid histograms

#### Rule 2

When the percent aneuploid fraction is less than or equal to 5%, the adjusted %S phase fraction cannot be determined and the data is excluded from the relative risk assessment

O Diploid rescaling: in a DNA diploid histograms, the total %S phase calculated is a mixture of both normal and tumor %S phase


#### Rule 3

To estimate %S phase for a diploid tumor, observed %S phase (combined result for tumor plus stromal cells) is divided by the tumor fraction, if known from an independent marker

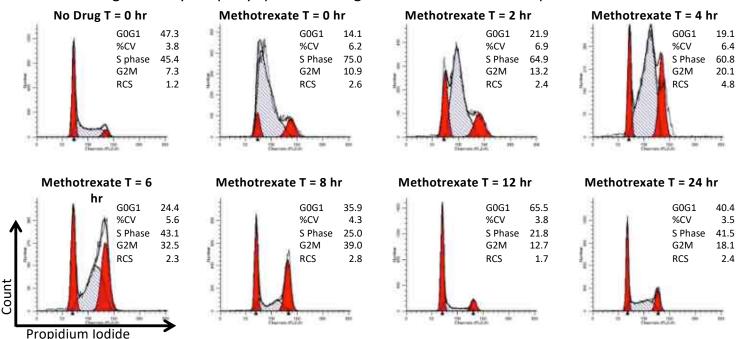
o If tumor fraction is not known, it can be crudely estimated as 50%

Bagwell et al., Cytometry, 46: 121-134, 2001. Updated at www.vsh.com/Presentations/BreastCAPrognosis.pdf

## **Visualising Synchronisation by FCM**



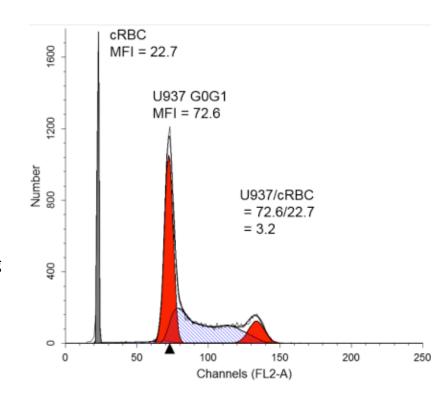
Cells stained with PI to visualise DNA content




## **Modeling Synchronized Cell Distributions**

- U937 cells were synchronized by incubation with methotrexate for 16 hours. The cells were then washed with complete medium and sampled at the indicated time points pos-synchronization.
- The G0G1 peak position was fixed at the position seen in the untreated control (assumes tube to tube consistency)
- The G2/G0G1 ratio was predetermined using normally cycling control material and fixed at 1.89
- Using the ModFit's Synchronization wizard:

The G0G1 position and SD were allowed to float


For fitting flexibility 5 equally spaced rectangles were used to model S phase

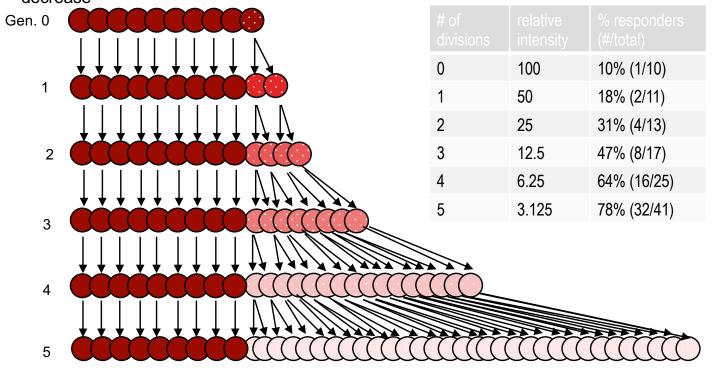


## Use of an In-tube Staining Standard to Assess Consistency of G0G1 Peak Position

Internal Controls
Chick RBCs
Trout RBCs
Normal Lymphocytes

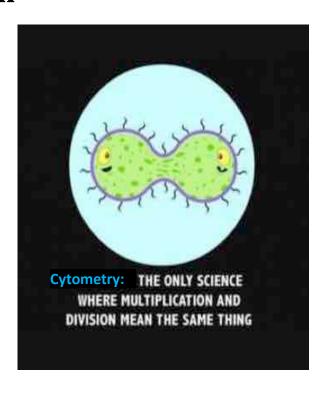
DNA Content
Human Diploid cells ~6 pg
Trout RBCs ~5.5 pg
Chick RBCs ~2.5 pg
E. coli ~0.02 pg




### THE PLAN

- Cell Cycle, Dyes & Techniques
  - Doublets- slow is the way to go
  - Data Analysis
    - Simple analysis
    - Modelling
  - Clinical Significance of Aneuploidy & S phase
  - Modelling Synchronized Populations
- Tracking Dye Dilution
  - The dyes many choices
  - Modelling Dye Dilution Data
  - Tracking Applications




### **Dye Dilution Proliferation Assay: Principles**

- Label starting population with bright, stable, non-toxic dye that distributes approximately equally between daughter cells at each division
- Monitor dye intensity profile at later time(s) to estimate extent of cell division based on
   1) proportion of cells with decreased fluorescence intensity and 2) extent of intensity decrease



Adapted from Givan et al. (2004) Methods Mol Biol, 263: 109-124

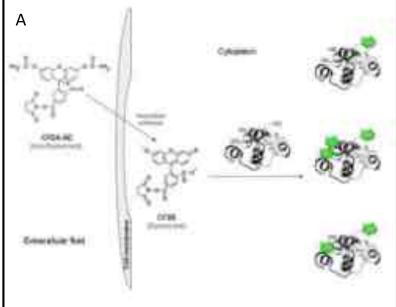
## **Key Assumptions for Cell Division Monitoring based on Dye Dilution**

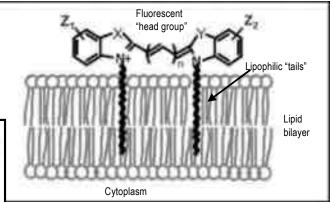


- Decrease in fluorescence intensity is proportional to increase in cell number
  - $\Rightarrow$  constant intensity ratio from generation to generation (ideal = 0.5)
- Decrease in fluorescence intensity reflects only cell division
  - ⇒ loss of dye due to other biological processes (e.g., apoptosis, necrosis, protein turnover or export, membrane transfer) must be excluded when analyzing dye dilution

### **Stable Labels for Cell Division Monitoring**

В


**TYPE A**: Random protein labeling dyes (prototype = CFSE)


Advantages:

Rapid, high intensity labeling for any cell type Stable covalent bond between dye and protein Disadvantages:

Too much dye can alter protein function(s)

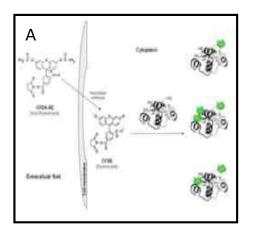
>50% of dye lost soon after labeling as short-lived proteins turn over and damaged proteins are cleared





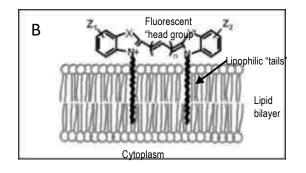
**TYPE B**: General membrane labeling dyes (prototype = PKH26)

Advantages:


Rapid, high intensity labeling for any cell type Lipid labeling less likely to alter protein function

No early dye losses

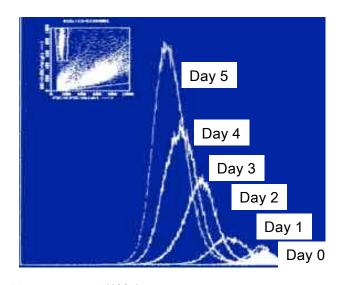
Disadvantages:


Too much dye can alter membrane integrity Dye is not covalently bound to membrane (retention is through hydrophobic interactions)

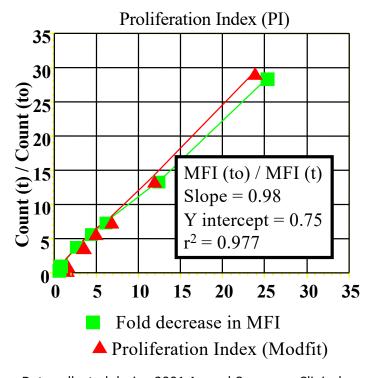
### General Protein Labeling Dyes



| Dye                                | Emission<br>max., nm | Useful laser<br>lines, nm |
|------------------------------------|----------------------|---------------------------|
| Fully charact                      | terized in publis    | hed studies               |
| CellTrace <sup>TM</sup> Violet     | 450                  | 405                       |
| CFSE                               | 525                  | 488                       |
| CPD eFluor® 670                    | 670                  | 633 - 647                 |
| Emergin                            | ig/preliminary s     | studies                   |
| CytoPainter Blue                   | 454                  | 405                       |
| CytoTell <sup>TM</sup> Blue        | 450                  | 405                       |
| CytoTrack <sup>TM</sup> Blue       | 454                  | 405                       |
| CPD eFluor® 450                    | 450                  | 405                       |
| VPD™ 450                           | 450                  | 405                       |
| CytoTell <sup>TM</sup> Green       | 525                  | 488                       |
| CytoTrack <sup>TM</sup> Green      | 525                  | 488                       |
| Oregon Green SE                    | 518                  | 488                       |
| CellTrace™ Far<br>Red DDAO-SE      | 659                  | 633 - 647                 |
| CellTrace <sup>TM</sup><br>Far Red | 661                  | 633 - 647                 |


### General Membrane Labeling Dyes



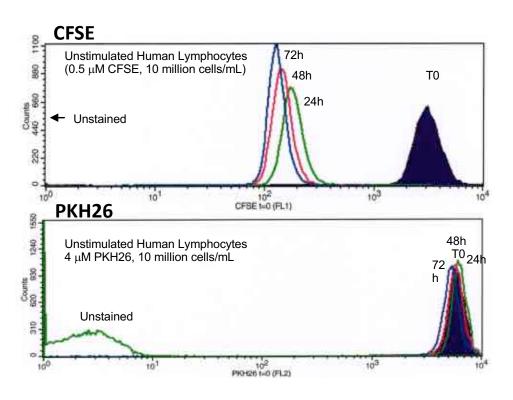

| Dye               | Emission<br>max., nm | Useful laser<br>lines, nm |
|-------------------|----------------------|---------------------------|
| Fully characte    | rized in publish     | ed studies                |
| CellVue® Lavendar | 461                  | 405                       |
| РКН2              | 504                  | 488                       |
| РКН67             | 502                  | 488                       |
| РКН26             | 567                  | 488, 514, 543             |
| CellVue® Plum     | 671                  | 633 - 647                 |
| CellVue® Claret   | 675                  | 633 - 647                 |
| CellVue® NIR780   | 776                  | 780                       |
| CellVue® NIR815   | 814                  | 780                       |
| Emerging          | / preliminary stu    | udies                     |
| CellVue® Lilac    | 460                  | 405                       |
| CytoID Green      | 527                  | 355, 488                  |
| CytoID Red        | 583                  | 457, 561                  |

# Does PKH26 Dye Dilution Track Increase in Cell Number in Simple Systems? YES

Continuously dividing 8E5LAV cell line



Yamamura *et al.* (1995) Cell. Mol. Biol. 41 (Suppl. 1): S121-132 Continuously dividing U937 cell line

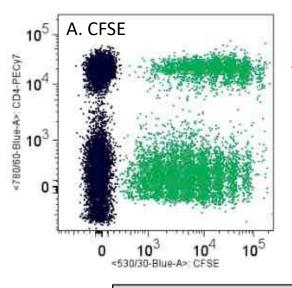



Data collected during 2001 Annual Course on Clinical Applications of Cytometry (Dartmouth Medical School)

### **Critical Issues for Dye Dilution Assays: Overview**

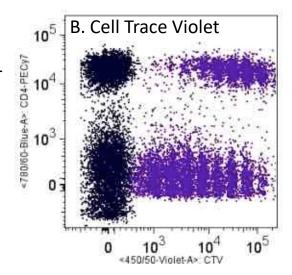
| Goal                                                               | Protein-reactive dyes (e.g., CFSE)                                                              | Membrane dyes (e.g., PKH26)                                                  |  |  |
|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--|--|
|                                                                    | DIFFERENCES                                                                                     |                                                                              |  |  |
| Bright,<br>homogeneous,<br>stable staining of<br>parent population | Rapid mixing matters  Dye uptake affected by cell size and/or                                   | Rapid mixing is even more important than with protein dyes                   |  |  |
|                                                                    | esterase activity                                                                               | Dye uptake affected by cell size                                             |  |  |
|                                                                    | Allow ~24h for intensity stabilization;<br>T=0 NOT a good biological or<br>compensation control | Stable initial intensity;<br>T=0 OK as biological or compensation<br>control |  |  |
|                                                                    | SIMILARITIES                                                                                    |                                                                              |  |  |
| No effect on cell function(s)                                      | Must be verified for each system                                                                |                                                                              |  |  |
| Appropriate                                                        | Linearity of Intensity scale                                                                    |                                                                              |  |  |
| Instrument setup                                                   | Color compensation                                                                              |                                                                              |  |  |
| Data                                                               | Exclude dead cells and contaminating cell types (e.g. monocytes)                                |                                                                              |  |  |
| acquisition/gating                                                 | Accumulate enough cells                                                                         |                                                                              |  |  |
| Data analysis                                                      | % (non-)proliferating                                                                           |                                                                              |  |  |
| matched to study                                                   | Proliferation or Stimulation Index                                                              |                                                                              |  |  |
| goals                                                              | Precursor Frequency                                                                             |                                                                              |  |  |

# Critical Controls: Dye Positive but Unstimulated




Wallace & Muirhead Immunol.Invest. 36:527–561 (2007) (Data courtesy of D. Bantly and J. Moore, Univ. of Pennsylvania)

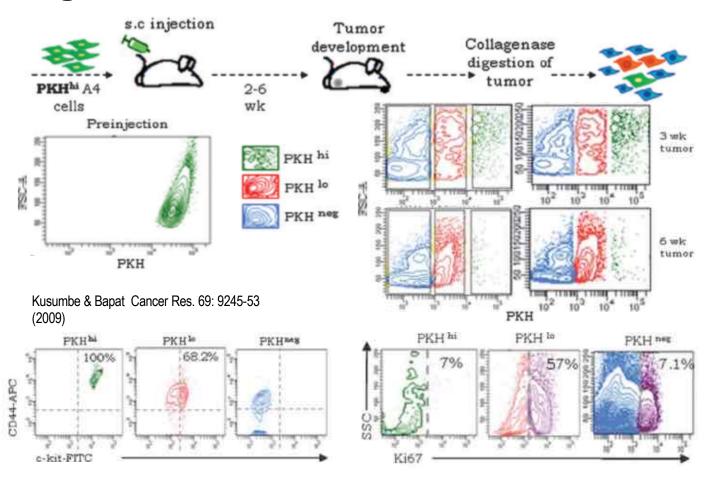
Unstimulated cells stained with proliferation tracking dye are used for:


- Instrument setup (brightest sample\*)
- Color compensation (brightest sample\*)
- Biological negative control (confirm intensity of non-responders)

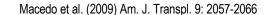
# **Cell Division Monitoring with Protein Dyes: Differential T Cell Responses to Mitogen (Con-A)**

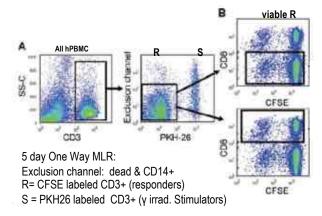


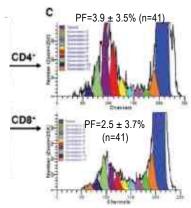
Viable (PIneg) CD3+CD4+ mouse splenocytes

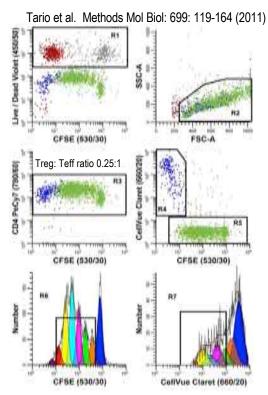

- No tracking dye
- CFSE
- CTV




| Ancestry<br>Subset<br>Value Type<br>For | Live Cells |
|-----------------------------------------|------------|
| No Proliferation Dyes Linstim           | 46.7       |
| No Proliferation Dyes + ConA            | 46.5       |
| CFSE Unstimulated                       | 39.7       |
| CTV Unstimulated                        | 44.9       |
| CTV ConA Stimulated                     | 44         |
| CFSE ConA Stimulated                    | 34.9       |


Data courtesy of K. Price, Malaghan Institute for Medical Research


# (Non)Proliferation Tracking: Finding Tumor Stem Cells *In Vivo*




# Take Home Message: No Single"Best" Dye, Many Good Options (and Combinations)







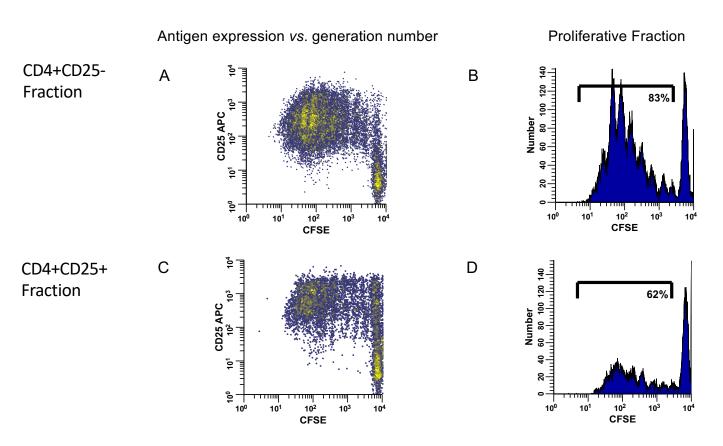


Green = viable Teff (CFSE+ LDFV-)
Blue = viable Treg (CellVue Claret+ LDFV -)
Red-brown = irrad. accessory cells (CFSE - Claret - LDFV -)
Gray = non-viable Teff (CFSE - LDFV+)

Red = non-viable Treg (CellVue Claret - LDFV +)

### "Let Us Count the Ways..."

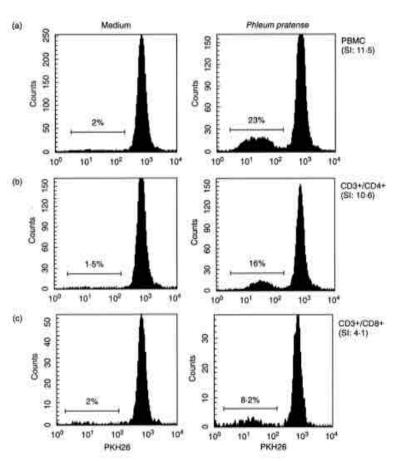
Methods for reporting/comparing extent of proliferation based on dye dilution profiles:


Type 1 -- "Eyeball" methods

- a) Trend(s) in antigen expression across generations
- b) % (non-)proliferating cells
- c) Stimulation Index

Type 2 -- Proliferation Profile deconvolution

- a) Proliferation index
- b) Precursor frequency


#### Do CD4+25- or CD4+CD25+ T cells Proliferate Faster?



Data courtesy of Dr. Feng Qian (RPCI). Mononuclear cells were separated into CD4+CD25+ and CD4+CD25- fractions using magnetic bead fractionation (Miltenyi Biotec) and stained with CFSE (5  $\mu$ M, 1 x 10<sup>7</sup> cells/mL), then cultured for 7 days with anti-CD3 and anti-CD28.

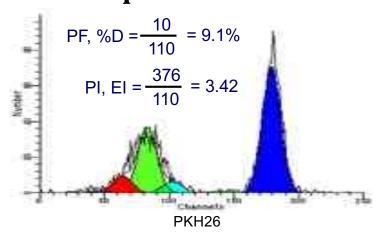
Wallace et al. (2008) Cytometry A 73(11): 1019-1034

### **Tracking Antigen Driven Responses by Subset: Stimulation Index**



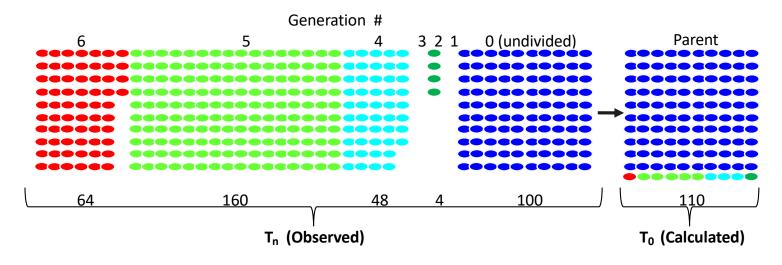
#### Methods:

Stain 10<sup>6</sup> PBMC/mL with 1.25 μM PKH26


- Culture 10<sup>5</sup>/well for 11 days with *P. pratense*, PPD or TT (medium change at day 5-7)
- Counterstain with FITC-CD3 and PC5-CD4 or PC5-CD8

SI = % proliferating cells (+ stim.) % proliferating cells (unstim.)

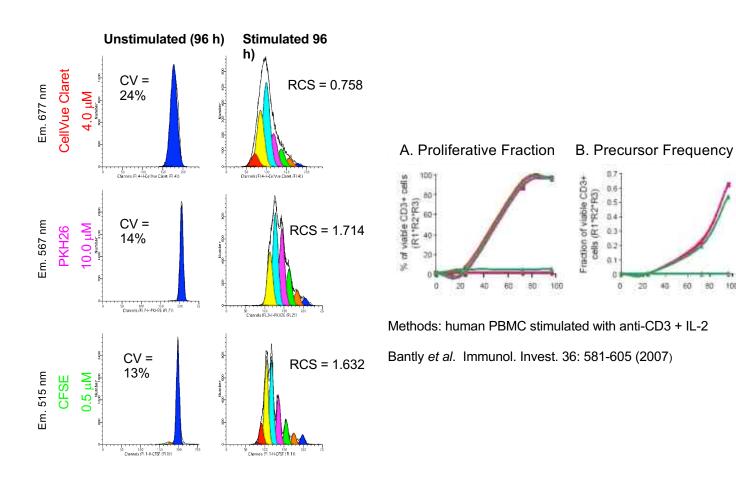
#### **Conclusions:**


- Increased SI in CD3+CD4+ cells from grass pollen sensitive atopic patients than non-allergic controls or non-grass pollen sensitive atopics
- Increased SI in CD3+CD8+ cells in only half of grass pollen sensitive ofs
- CD3+CD4+ precursor frequencies similar for *P pratense*, PPD and TT Rimaniol *et al.* (2003)
   Clin. Exp. Immunol. 132: 76-80

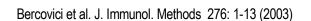
## **Curve Fitting For Dye Dilution Analysis: Principles**

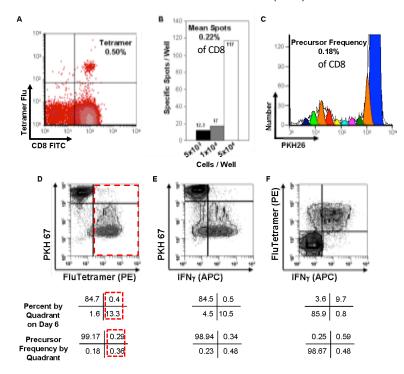


Precursor Frequency (PF) or % Divided (%D) = calculated frequency of responder cells present in parental population at T0


Proliferation Index (PI) or Expansion Index (EI) = fold expansion during assay period (ratio of final cell count to calculated starting cell count)



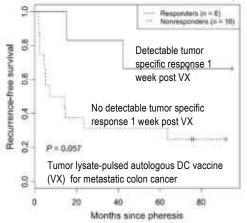

### **Proliferation Modeling Statistics**


| Statistic                                      | Software                           | Interpretation                                                                   |                                                                                                        |
|------------------------------------------------|------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Precursor<br>Frequency                         | ModFit<br>FCS<br>Express<br>FlowJo | Probability that a cell will divide at least once                                | Gate %6  CFSE peak #0 4.36  CFSE peak #1 16.5  CFSE peak #2 21.3  CFSE peak #3 20.5  CFSE peak #4 16.3 |
| Proliferation<br>Index<br>Expansion Index      | ModFit<br>FCS<br>Express<br>FlowJo | Fold expansion during culture (ratio of final cell count to starting cell count) | CFSE peak #5 11 CFSE peak #6 6.42 CFSE peak #7 2.26 CFSE peak #8 0.755                                 |
|                                                |                                    |                                                                                  | 800                                                                                                    |
| Division Index Replication Index               | FCS<br>Express<br>FlowJo           | For the responding cells the fold expansion during culture                       | 400                                                                                                    |
|                                                |                                    |                                                                                  | 200                                                                                                    |
| Proliferation Index Adapted from: Roederer, M. | FlowJo  Cytometry A. 79: 95-       | For the responding cells, the average number of divisions they will undergo      | 0 10 <sup>2</sup> 10 <sup>3</sup> 10 <sup>4</sup> 10<br><530/30-Blue-A> CFSE                           |

# Are Visible Peaks Required for Accurate Cell Division Analysis Using Dye Dilution?



### Cell Division Monitoring in More Complex Systems: Not All Cells Able to Bind Antigen Go On to Proliferate






Wallace et al. (2008) Cytometry 73A: 1019-1034



Barth et al. Clin. Cancer Res. 16: 5548-5556 (2010)



### Roswell Park Cancer Institute

